半稠密重建:
通常是重建图像纹理或梯度比较明显的区域,这些区域特征比较鲜明。半稠密重建在直接法视觉SLAM里比较常见。重建的三维点云相对稠密,可以满足部分应用需求。
稠密重建:
稠密重建是对整个图像或者图像中的绝大部分像素进行重建。与稀疏、半稠密相比,稠密重建对场景的三维信息理解更quan面,更能符合应用需求。但是,由于要重建的点云数量太多,相对耗时。
表面生成的目的是为了构造物体的可视等值面,常用体素级方法直接处理原始灰度体数据。Lorensen提出了经典体素级重建算法:MC(Marching Cube,移动立方体)法。移动立方体法首先将数据场中八个位置相邻的数据分别存放在一个四面体体元的八个**点处。对于一个边界体素上一条棱边的两个端点而言,当其值一个大于给定的常数T,另一个小于T时,则这条棱边上一定有等值面的一个**点。然后计算该体元中十二条棱和等值面的交点,并构造体元中的三角面片,所有的三角面片把体元分成了等值面内与等值面外两块区域。连接此数据场中的所有体元的三角面片,构成等值面。合并所有立方体的等值面便可生成完整的三维表面。
大势智慧是一家专注于真实世界三维数字化重建及三维数据服务的**企业,公司在城市高精度三维建模、模型应用及语义化理解和文化遗产数字化保护领域具有先进的技术优势和丰富实践经验。
三维数据比二维数据更各方面体现客观实际。三维数字模型与二维数字模型类似,实景三维,都要具备基本的空间数据处理能力,如数据获取、数据操纵、数据组织、数据分析和数据表现等。相比于二维数字模型,三维数据模型具有更多优势。