在计算机内生成物体三维表示主要有两类方法。一类是使用几何建模软件通过人机交互生成人为控制下的物体三维几何模型,3d云建模,另一类是通过一定的手段获取真实物体的几何形状。前者实现技术已经十分成熟,现有若干软件支持,比如:3DMAX、Maya、AutoCAD、UG等等,它们一般使用具有数学表达式的曲线曲面表示几何形状。后者一般称为三维重建过程,三维重建是指利用二维投影恢复物体三维信息(形状等)的数学过程和计算机技术,包括数据获取、预处理、点云拼接和特征分析等步骤。
莫尔条纹在生活中比较常见,如两层薄薄的丝绸重叠在一起,云建模系统,即可以看到不规则的莫尔(Morie)条纹。基本原理是将两块等间隔排列的直线簇或曲线簇图案重叠起来,以非常小的角度进行相对运动来形成莫尔条纹。因光线的透射与遮挡而产生不同的明暗带,即莫尔条纹。莫尔条纹随着光栅的左右平移而发生垂直位移,此时产生的条纹相位信息体现了待测物体表面的深度信息,再通过逆向的解调函数,实现深度信息的恢复。这种方法具有精度高、实时性强的优点,但是其对光照较为敏感,抗干扰能力弱。
对于多帧通过不同角度拍摄的景物图像,各帧之间包含一定的公共部分。为了利用深度图像进行三维重建,需要对图像进行分析,云建模,求解各帧之间的变换参数。深度图像的配准是以场景的公共部分为基准,把不同时间、角度、照度获取的多帧图像叠加匹配到统一的坐标系中。计算出相应的平移向量与旋转矩阵,同时消除冗余信息。点云配准除了会制约三维重建的速度,也会影响到模型的精细程度和全局效果。因此必须提升点云配准算法的性能。